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Abstract

Several solutions to hard numerical problems using P systems have been presented recently, and
strong similarities in their designs have been noticed. In this paper we present a new solution,
to the Partition problem, via a family of deterministic P systems with active membranes using
2-division. Then, we intend to show that the idea of a cellular programming language is possible
(at least for some relevant family of NP-complete problems), indicating some “subroutines” that
can be used in a variety of situations and therefore could be useful for designing solutions for new
problems in the future.
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1 Introduction

In [3], a new model of computation within the framework of Natural Computing
was introduced, called Membrane Computing. It starts from the assumption
that the processes taking place in the compartmental structure of a living cell
can be interpreted as computations. The computational devices of this model
are called P systems.

Many results have been presented in the field during the last years by
computer scientists, biologists, formal linguists and complexity theoreticians,
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both confirming the relevance of the area and enriching it with many open
problems and research lines.

In this paper we present a family of P systems that solves a numerical NP-
complete problem, namely, the Partition problem. The design of this solution
is inspired in several previous works on other problems, mainly the Subset-
Sum and the Knapsack problems, but also the VALIDITY and SAT. The
similarities between the design introduced here and the solutions presented in
[5], [6], [8] and [10] will be highlighted and some conclusions will be extracted
from them.

The paper is organized as follows: first some preliminary ideas about rec-
ognizer P systems and complexity classes are introduced in the next section;
then, in section 3 a cellular solution for the Partition problem is presented,
and some comments about the possibility of generalizing the design are given
in section 4; finally, an example of application is shown in section 5 and some
final remarks are given in section 6.

2 Preliminaries

Recall that a decision problem, X, is a pair (IX , θX) such that IX is a language
over a finite alphabet (whose elements are called instances), and θX is a total
boolean function over IX . That is, the answer to each instance of the problem
will be either TRUE (Yes) or FALSE (No). This is why we are interested
in using a computing device that is able to receive an input, process it, and
deliver a boolean answer.

In our case, we have chosen the class of P systems with input and with
external output (special objects Y es and No will be used to implement the
boolean answer). In order to obtain a significant speed-up, we will work
in a cellular model using active membranes, and so we are allowed to use
membrane division to obtain in polynomial time an exponential workspace.
We also impose some restrictions, for instance we want the systems to be
confluent (all computations with the same input lead to the same output),
also every computation must be finite and, furthermore, we want that the
answer is delivered in the last step of the computation, by sending to the
environment a special object Y es or No.

2.1 Recognizer P systems with Active Membranes

Roughly speaking, a P system consists of a cell-like membrane structure, in the
compartments of which one places multisets of objects which evolve according
to given rules in a synchronous, non-deterministic, maximally parallel manner.
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A layman-oriented introduction can be found in [4] and further bibliography
at [11].

Definition 2.1 A P system with input is a tuple (Π, Σ, iΠ), where: (a) Π is
a P system, with working alphabet Γ, with p membranes labelled by 1, . . . , p,
and initial multisets M1, . . . ,Mp associated with them; (b) Σ is an (input)
alphabet strictly contained in Γ and the initial multisets are over Γ − Σ; and
(c) iΠ is the label of a distinguished (input) membrane.

The computations of a P system with input m ∈ M(Σ), a multiset over Σ,
are defined in a natural way. The only novelty is that the initial configuration
of (Π, Σ, iΠ) must be the initial configuration of the system associated with
the input multiset m ∈ M(Σ).

Definition 2.2 Let (Π, Σ, iΠ) be a P system with input. Let Γ be the working
alphabet of Π, µ the membrane structure and M1, . . . ,Mp the initial multisets
of Π. Let m be a multiset over Σ. The initial configuration of (Π, Σ, iΠ) with
input m is (µ,M1, . . . ,MiΠ ∪ m, . . .Mp).

In the case of P systems with input and with external output, the concept
of computation is introduced in a similar way but with a slight variant. We
consider that it is not possible to observe the internal processes inside the
P system, and we can only know if the computation has halted via some
distinguished objects sent out to the environment. We can formalize these
ideas in the following way.

Definition 2.3 A recognizer P system is a P system with input, (Π, Σ, iΠ),
and with external output such that:

(i) The working alphabet contains two distinguished elements YES, NO.

(ii) All its computations halt.

(iii) If C is a computation of Π, then either some object YES or some object
NO (but not both) must have been released into the environment, and
only in the last step of the computation. We say that C is an accept-
ing computation (respectively, rejecting computation) if the object YES
(respectively, NO) appears in the external environment associated to the
corresponding halting configuration of C.

This recognizer systems are specially suitable when trying to solve decision
problems.

Definition 2.4 A P system with active membranes is a tuple Π =
(Σ, H, µ,M1, . . . ,Mm, R) where:

(i) m ≥ 1, is the initial degree of the system;
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(ii) Σ is an alphabet of symbol-objects;

(iii) H is a finite set of labels for membranes;

(iv) µ is a membrane structure, of m membranes, labelled (not necessarily in
a one-to-one manner) with elements of H ;

(v) M1, . . . ,Mm are strings over Σ, describing the initial multisets of objects
placed in the m regions of µ;

(vi) R is a finite set of evolution rules, of the following forms:
(a) [ a → ω ]αh for h ∈ H ,α ∈ {+,−, 0}, a ∈ Σ, ω ∈ Σ∗: This is an

object evolution rule, associated with a membrane labelled with h
and depending on the polarity of that membrane, but not directly
involving the membrane.

(b) a [ ]α1

h → [ b ]α2

h for h ∈ H , α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
from the region immediately outside a membrane labelled with h is in-
troduced in this membrane, possibly transformed into another object,
and simultaneously, the polarity of the membrane can be changed.

(c) [ a ]α1
h → b [ ]α2

h for h ∈ H , α1, α2 ∈ {+,−, 0}, a, b ∈ Σ: An object
is sent out from membrane labelled with h to the region immedi-
ately outside, possibly transformed into another object, and simulta-
neously, the polarity of the membrane can be changed.

(d) [ a ]αh → b for h ∈ H , α ∈ {+,−, 0}, a, b ∈ Σ: A membrane labelled
with h is dissolved in reaction with an object. The skin is never
dissolved.

(e) [ a ]α1

h → [ b ]α2

h [ c ]α3

h for h ∈ H , α1, α2, α3 ∈ {+,−, 0}, a, b, c ∈ Σ: An
elementary membrane can be divided into two membranes with the
same label, possibly transforming some objects and their polarities.

These rules are applied according to the following principles:

• All the rules are applied in parallel and in a maximal manner. In one step,
one object of a membrane can be used by only one rule (chosen in a non
deterministic way), but any object which can evolve by one rule of any form,
must evolve.

• If a membrane is dissolved, its content (multiset and internal membranes)
is left free in the surrounding region.

• If at the same time a membrane labelled by h is divided by a rule of type
(e) and there are objects in this membrane which evolve by means of rules
of type (a), then we suppose that first the evolution rules of type (a) are
used, and then the division is produced. Of course, this process takes only
one step.

• The rules associated with membranes labelled by h are used for all copies

M.A. Gutiérrez-Naranjo et al. / Electronic Notes in Theoretical Computer Science 123 (2005) 93–11096



of this membrane. At one step, a membrane can be the subject of only one
rule of types (b)-(e).

Let us denote by AM the class of recognizer P systems with active membranes
using 2-division.

2.2 The complexity class PMCF

The first results about “solvability” of NP–complete problems in polynomial
time (even linear) by cellular computing systems with membranes were ob-
tained using variants of P systems that lack an input membrane. Thus, the
constructive proofs of such results need to design one system for each instance
of the problem.

If we wanted to perform such a solution of some decision problem in a
laboratory, we will find a drawback on this approach: a system constructed to
solve a concrete instance is useless when trying to solve another instance. This
handicap can be easily overtaken if we consider a P system with input. Then,
the same system could solve different instances of the problem, provided that
the corresponding input multisets are introduced in the input membrane.

Instead of looking for a single system that solves a problem, we prefer
designing a family of P systems such that each element decides all the instances
of equivalent size, in some sense.

Definition 2.5 Let F be a class of recognizer P systems. We say that a
decision problem X = (IX , θX) is solvable in polynomial time by a family
Π = (Π(n))n∈N+ , of F , and we denote this by X ∈ PMCF , if the following is
true:

• The family Π is polynomially uniform by Turing machines; that is, there
exists a deterministic Turing machine constructing Π(n) from n ∈ N

+ in
polynomial time.

• There exists a pair (g, h) of polynomial-time computable functions g : L →⋃
n∈N+ IΠ(n) and h : L → N

+ such that for every u ∈ L we have g(u) ∈
IΠ(h(u)), and
· The family Π is polynomially bounded with regard to (g, h); that is, there

exists a polynomial function p, such that for each u ∈ IX every computa-
tion of Π(h(u)) with input g(u) is halting and, moreover, it performs at
most, p(|u|) steps.

· The family Π is sound, with regard to (X, g, h); that is, for each u ∈ IX it
is verified that if there exists an accepting computation of Π(h(u)) with
input g(u), then θX(u) = 1.

· The family Π is complete, with regard to (X, g, h); that is, for each u ∈ IX
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it is verified that if θX(u) = 1, then every computation of Π(h(u)) with
input g(u) is an accepting one.

In the above definition we have imposed every P system Π(n) to be conflu-
ent, in the following sense: every computation with the same input produces
the same output.

We have the class PMCF is closed under polynomial–time reduction and
complement.

3 Solving the Partition problem in linear time

In this section we present a linear time solution to the Partition problem, in
terms of P systems with active membranes, constantly comparing it with the
solutions to the Subset–Sum and Knapsack problems given in [5] and [6].

The Partition problem can be stated as follows: Given a set A of n ele-
ments, where each element has a “weight” wi ∈ N, decide whether or not there
exists a partition of A into two subsets with the same total weight.

We will represent the instances of the problem using tuples of the kind
(n, (w1, . . . , wn)), where n is the size of the set A and (w1, . . . , wn) is the list
of weights of the elements from A. We can define in a natural way an additive
function w that corresponds to the data in the instance.

We address the resolution of the problem via a brute force algorithm. The
strategy can be roughly split into the following subgoals:

• Generation stage: use membrane division to get a single membrane for each
subset.

• Calculation stage: compute in each membrane the weight of its associated
subset and the weight of its complementary.

• Checking stage: in each membrane, compare w(B) with w(Bc), where B is
the associated subset.

• Output stage: the answer is delivered according to the results of the check-
ing.

The family presented here is Π = {(Π(n), Σ(n), i(n)) : n ∈ N}. For each
element of the family, the input alphabet is Σ(n) = {x1, . . . , xn}, the in-
put membrane is always the same, i(n) = e, and the P system Π(n) =
(Γ(n), {e, r, s}, µ,Me,Mr,Ms, R) is defined as follows:

• Working alphabet:

Γ(n) = {a0, a, b0, b, c, d0, d1, d2, e0, . . . , en, g, ḡ, ĝ, h0, h1, i1, i2, i4, i5,
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p, p̄, q, x0, . . . , xn, Y es, No, No0, z1, . . . , z2n+1, #}.
• Membrane structure: µ = [ [ ]e [ ]r ]s.
• Initial multisets: Me = e0g; Mr = b0h0 and Ms = z1.

• The set of evolution rules, R, consists of the following rules:

(a) [ei]
0
e → [q]−e [ei]

+
e , for i = 0, . . . , n.

[ei]
+
e → [ei+1]

0
e[ei+1]

+
e , for i = 0, . . . , n − 1.

The goal of these rules is to generate one membrane for each subset of
A. Indeed, exactly the same two schemes of rules are used for the generation
stages in the Subset-Sum and the Knapsack case. Here is how these rules
work: in each step (according to the index of ei), we consider an element of
A and either we add it to the subset associated with the membrane, B, or we
put it in the complementary subset, Bc. Note that a membrane can proceed
to the checking stage only after it gets negative charge; a positively charged
membrane where the object en appears will get blocked (it will be dissolved,
see rules in (i)).

(b) [x0 → a0]
0
e; [x0 → p̄]+e .

[xi → xi−1]
+
e , [xi → p̄]−e , for i = 1, . . . , n.

At the beginning, the multiplicities of the objects xj (with 1 ≤ j ≤ n)
encode the weights of the corresponding elements of A. They are not present
in the definition of the system, but they are inserted as input in the membrane
labelled by e before starting the computation: for each aj ∈ A, wj copies of
xj have to be added to the input membrane. During the computation, at the
same time as elements are added to the subset associated with a membrane,
objects a0 and p̄ are generated to store the weight of this subset and of its
complementary. Again, these schemes of rules are almost identical to the ones
used for the calculation stages of the Subset-Sum and Knapsack (see [5], [6]),
the only difference is that here the weight of the complementary is kept, and
in the mentioned papers it was just removed.

Indeed, it is worth noticing that the index-rotation technique was already
used in [8] and [10] to deal with the set of variables in an ordered manner,
even though there was no weight calculation there.

(c) [q → i1]
−
e ; [p̄ → p]−e ; [a0 → a]−e .

When a membrane gets negatively charged, the two first stages (i.e., gener-
ation and calculation stages) end, and then some transition rules are applied.
Objects a0 and p̄, whose multiplicities encode the weights of the associated
subset, w(B), and of its complementary, w(Bc), are renamed for the next
stage, when their multiplicities are compared (similar renaming rules can be
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found in the designs of the Subset-Sum and Knapsack solutions). The renam-
ing is useful to avoid conflicts between rules from the checking stage and rules
from the generation and calculation stages.

(d) [a]−e → [ ]0e#; [p]0e → [ ]−e #.

These rules implement the comparison mentioned above (that is, they
check whether w(B) = w(Bc) holds or not). They work as a loop that erases
objects a and p one by one alternatively, changing the charge of the membrane
in each step. Exactly the same method can be used to compare the multiplic-
ities of whatever two objects of the working alphabet, so again we find rules
that might be re-used when attacking other numerical problems.

(e) [i1 → i2]
−
e ; [i2 → i1]

0
e.

A marker that controls the previous loop is described here. The index of ij
and the electric charge of the membrane give enough information to point out
if the number of objects a is greater than (less than or equal to) the number
of objects p.

Here we find the first important difference in the design with respect to
the ones for Subset-Sum and Knapsack. There counters were used, and the
schemes of rules depended on the number of steps that the checking was going
to last. But now this number of steps depends on the total weight of the set
A, and we cannot use this information if we want an uniform design. However,
there are good news: the rules used here can be used also in general, so new
versions of the solutions to Subset-Sum and Knapsack using this subroutine
can be given.

(f) [i1]
0
e → [ ]+e No.

This rule, together with the ones in the next item, take care of the result of
the checking. If a subset B ⊆ A verifies that w(B) > w(Bc), then at the end
of the calculation stage there will be less objects p than a inside the membrane
associated with it. This forces the loop described in (e) to halt: the moment
will come when there are no objects p left, and then the rule [i2 → i1]

−
e will

be applied but it will not be possible to apply the rule [p]0e → [ ]−e # at the
same time. Thus, an object i1 will be present in the membrane and the latter
will be neutrally charged, so the rule (f) will be applied, ending the checking
stage with a negative result.

(g) [i2 → i4c]
−
e .

[c]−e → [ ]0e#; [i4 → i5]
0
e.

[i5]
0
e → [ ]+e Y es; [i5]

−
e → [ ]+e No.

If, on the contrary, w(B) ≤ w(Bc) holds, then the objects a will be ex-

M.A. Gutiérrez-Naranjo et al. / Electronic Notes in Theoretical Computer Science 123 (2005) 93–110100



hausted before the objects p. It is important to distinguish between the cases
where the multiplicity of p is strictly greater than the multiplicity of a and the
cases where these multiplicities coincide. This is why object c gives again neu-
tral charge to the membrane and then object i5 checks if a rule [p]0e → [ ]−e #
is applied or not.

(h) [p → #]+e ; [a → #]+e .

If after the checking loop of rules in (d) has finished there still are some
objects p or a in the membrane, they can be erased (just for “cleaning” pur-
poses).

(i) [en]+e → #.

[a0 → #]0s; [p̄ → #]0s; [g → #]0s.

These rules also perform a “cleaning” task, dissolving the membranes that
are not meaningful and erasing the objects that these membranes leave in the
skin membrane. This is not essential in the design, but it is helpful.

(j) [zi → zi+1]
0
s, for i = 1, . . . , 2n.

[z2n+1 → d0d1]
0
s.

[d1]
0
s → [ ]+s d1.

Before the answer is sent out, the system has to make sure that all the
relevant membranes have finished their checking stages. To do this, first we
wait for 2n + 1 steps and then we activate the process. This needs to be done
in order to make sure that the division process is over, and thus we know that
from this moment on, the membranes that finish their checking stage, and
only them, will have positive charge (see the rules in (f) and (g) for the end
of the checking and note that we get rid of the spare membranes via the rules
in (i)).

(k) [g]−e → [ ]−e ḡ.

[ḡ → ĝ]+s .

ĝ[ ]+e → [ĝ]0e.

As we said before, we need to check if all the relevant membranes have
finished their checking stages. This is done using the objects g that are present
in the skin and the auxiliary membrane labelled by r (see the next set of rules).
There must be 2n copies of g, because each relevant membrane sends one, and
there is one relevant membrane for each subset of A, that is 2n in all.

(l) d0[ ]0r → [d0]
−
r .

[h0 → h1]
−
r ; [h1 → h0]

+
r .

[b0]
−
r → [ ]+r b; ĝ[ ]+r → [ĝ]−r .
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b[ ]−r → [rb0]
+
r ; [ĝ]+r → [ ]−r ĝ.

[h0]
+
r → [ ]+r d2; [d2]

+
s → [ ]0sd2.

The membrane labelled by r is present in the initial configuration, but
remains inactive until an object d0 “wakes it up”. The purpose of this mem-
brane is to perform a loop where the objects ĝ are involved, in such a way
that if there are no objects ĝ available in the skin, the loop will halt. Thus,
we can detect if there are no objects ĝ present in the skin region. This fact
will mean that all the relevant membranes have finished their checking stage,
and that the system is ready to send out the answer (Y es or No).

(m) [No → No0]
−
s .

[Y es]−s → [ ]0sY es.

[No0]
−
s → [ ]0sNo.

Finally, the output process is activated. The skin membrane needs to be
negatively charged before the answer is sent out. Object d2 takes care of this
(see the previous set of rules) and then, if the answer is affirmative, an object
Y es will be sent out recovering the neutral charge for the skin. Note that the
answer Y es has some priority over the negative answer, in the sense that we
first check if there is any object Y es and then, if it is not the case, the answer
No will be sent out. This little trick of changing the electrical charge of the
skin membrane and using the auxiliary object No0 is also used in the other
two designs, so hopefully this feature can be also saved for future designs.

3.1 Some comments on computational complexity

The main goal of the design presented above is not just solving the Partition
problem, but to do it efficiently, according to some prefixed standards (see the
complexity classes presented in Subsection 2.2). Recall that the active mem-
branes model allows us to create an exponential workspace in polynomial time
during the computation. We exploit this fact, and thus we are only concerned
with the time complexity (number of cellular steps of any computation) and
about the resources initially needed to build the P systems.

In this line, note that the family of P systems introduced above has a
recursive description and it requires only a polynomial amount of resources:
• size of the alphabet: 4n + 27 ∈ Θ(n).
• number of initial membranes: 3 ∈ Θ(1).
• size of initial multisets: 5 ∈ Θ(1).
• number of evolution rules: 6n + 39 ∈ Θ(n).

Furthermore, it can be proved that the system is confluent and that the
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number of steps of any computation is of linear order with respect to the size 2

of the input multiset. That is, Partition ∈ PMCAM.

Analogous complexity results were obtained and proved for the SAT [8],
VALIDITY [10], Subset-Sum [5] and Knapsack [6] problems.

4 Generalizing the rules: towards a programming lan-
guage

In this section we will present an overview of the computation, commenting
how the rules work and sketching the first instructions that could be added
to the library of subroutines of the programming language that we intend to
create.

In the first step of the computation, the rule [ei]
0
e → [q]−e [ei]

+
e is applied,

for i = 0. From this moment on, the rest of division rules will be applied
in turns, in such a way that whenever a negatively charged membrane is
created, it will not divide anymore. The concept of subset associated with
an internal membrane is an abstraction, because there are no witness-objects
in the membrane to encode it, but we can agree to “associate” subsets with
membranes following this definition:

• The subset associated with the initial membrane is the empty one.

• When an object ej appears in a neutrally charged membrane (with j <
n), then the j-th element of A is selected and added up to the previous
associated subset. Once the stage is over, the associated subset will not be
modified anymore.

• When a division rule is applied, the two newborn membranes inherit the
associated subset from the original membrane.

As we already said, the rules in (a) are exactly repeated in the designs for
Subset-Sum and Knapsack (see [5] and [6], respectively). Thus, we could
create a new instruction, valid to use it in the designs of P systems, called for
example

gen subsets(n)

This is just a notation; whenever we find this in a design we should replace it
by the set of rules described in (a). We can also make use, if needed, of the
semantic notion of associated subset in further stages of the computation.

For instance, this is done in the calculation stage. The weights of the
elements are added only if the element is selected for the associated subset.

2 The instance is encoded in a 1-ary fashion in the system, through the input multiset
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calc weight(n) ≡

⎛
⎜⎜⎜⎜⎜⎝

[x0 → subs]0e,

[x0 → compl]+e ,

[xi → xi−1]
+
e , for i = 1, . . . , n

[xi → compl]−e , for i = 1, . . . , n

⎞
⎟⎟⎟⎟⎟⎠

The object compl can be substituted by λ if we do not want information
about the complementary, or by other objects, depending on the concrete
problem that we are addressing (maybe we could add a second variable that
says if the weight of the complementary should be computed or not). The
object subs encodes with its multiplicity the weight of the associated subset;
we are free to use any object instead, it depends on our specific notation. For
instance, in the Knapsack problem, two functions have to be computed: the
weight and the value of the subset. Thus, we have to include twice the rules,
using two different sets of indexed objects, one for each function (for instance,
in [6], xj and yj were used, for j = 0, . . . , n).

The generation and calculation stages end in a membrane when it gets
negative charge for the first time, and we have at our disposal a witness-
object q that appears in the membrane exactly in that moment. If we want to
perform now the comparison between the multiplicities of two objects, we need
to rename all the objects in the membrane, to make sure that there does not
exist overlaping, i.e. we want to avoid nondeterminism. The renaming step
depends strongly on the problem, because the new objects that are needed
depend on how many stages we want to perform later on.

The next set of rules is (d). When these two rules are applied iteratively, a
loop is created. The charge of the membrane changes from negative to neutral
and back to negative in every loop, until one of the two objects that are being
used is exhausted and the loop halts.

check weight ≡
⎛
⎝ [obj1]−e → [ ]0e#

[obj2]0e → [ ]−e #

⎞
⎠

Observe that this time the scheme of rules does not depend on n, we just
compare the number of occurrences of two objects, obj1 and obj2. The names
of this objects can be customized, as well as the two charges that are used.
We can again recall the design of the Knapsack in [6] as an example, because
two checking stages were carried out there, with different objects and different
charges, but the same changing-charge-loop design.

Next, let us pay attention to the rules that take care of the result of the
checking. As we said before, instead of using a counter that increases its index
in each step we use two objects as markers, and this suffices to detect when
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the loop has halted. The evolution of these markers is as rules from item (e)
show.

[isame → idiff ]−e ; [idiff → isame]
0
e

Let us concentrate on the termination of the checking stage. First of all, if the
multiplicity of obj1 is greater than the multiplicity of obj2 then the moment
will come when the rule [obj1]−e → [ ]0e# will be applied but its counterpart
in the loop ([obj2]0e → [ ]−e #) will not be applied in the next step, and so the
membrane will keep a neutral charge for two consecutive evolution steps. This
fact is detected by the marker and in the following step the rule

[isame]
0
e → [ ]+e zmore

will be applied, bringing the checking stage of this membrane to its end. In
the case of the Partition problem, the fact that there are more copies of object
obj1 than of obj2 means a negative answer, so we replace zmore by No, but
in other problems it could be replaced by Y es or by other special objects in
order to activate further stages.

If, on the contrary, the multiplicity of obj1 is less than or equal to the
multiplicity of obj2, then the membrane will have a negative charge for two
consecutive steps, but we need to check if any object obj2 is still present in
the membrane. This can be done using the rules

[idiff → aux1c]
−
e ; [c]−e → [ ]0e#

then, in the next step the rule [aux1 → aux2]
0
e will be applied, and the charge

will change if and only if there are some objects obj2 left (via the rule [obj2]0e →
[ ]−e #). Finally, we differentiate the results depending on the electrical charge:

[aux2]
0
e → [ ]+e zequal; [aux2]

−
e → [ ]+e zless

Again, in our problem we have customized zequal to be Y es and zless to be No,
but this depends on the condition that we are checking. Maybe in some prob-
lems instead of using objects No we are interested in blocking the membrane,
and this can be done simply removing the corresponding rule.

marker eq ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[isame → idiff ]−e ; [idiff → isame]
0
e

[isame]
0
e → [ ]+e No

[idiff → aux1c]
−
e ; [c]−e → [ ]0e#

[aux1 → aux2]
0
e

[aux2]
0
e → [ ]+e Y es; [aux2]

−
e → [ ]+e No

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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The corresponding variants marker leq and marker geq can be defined if we
consider that the successful result of the checking is to detect that the number
of objects obj1 is less than (or greater than, respectively) the number of obj2.

It is time now to comment how the answer process is managed. It was
already hinted in the previous section that there is a membrane, labelled by r,
that plays a central role. Let us explain the process step by step (see Figure
1 for a graphical description of the detection loop).

are there
objects g

in the skin?
d0 hnegd0

r
b

d 0d 0 hneg

r

b

b

d0 hneg

r

gd0 hneg

YES

NO

r

hpos

r
b d2

b
r

gb

Fig. 1. Membrane r detection loop

We need to check if 2n membranes have finished their checking stages, and
to do this it seems a good idea to use 2n objects, in order to make use of the
parallelism of the model. To generate these objects we include an object g
in the initial configuration and we use the rule [g]−e → [ ]−e ḡ. The object g
is replicated every time the membrane divides, and this rule is applied when
the membrane ends the generation and calculation stages and before starting
the checking. We know that 2n copies of ḡ will be sent to the skin in some
moment of the computation, but not simultaneously.

The idea is to make these objects return back to their membranes when the
checkings are over. In order to avoid interferences with some checking stages
that last longer than others, we add a counter and a renaming rule, and the
process of counting how many membranes have finished their checking stage
does not start until an object d1 is sent out to the environment and the skin
gets negative charge.

In the same step, an object d0 enters the membrane r and activates the
loop described by the rules in (l) and depicted in Figure 1. The idea is that
membrane r tries to fish any object ĝ present in the skin: the object b plays
the role of bait, because it gives positive charge to the membrane allowing
thus the rule ĝ[ ]+r → [ĝ]−r to apply (it is clear that if there are no objects ĝ
in the skin then the rule can not be applied). There is a marker inside the

M.A. Gutiérrez-Naranjo et al. / Electronic Notes in Theoretical Computer Science 123 (2005) 93–110106



membrane that controls if any object actually entered the membrane, and in
negative case, an object d2 will be sent to the skin in order to finish the answer
stage.

detector ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

d0[ ]0r → [d0]
−
r

[hneg → hpos]
−
r ; [hpos → hneg]

+
r

[b]−r → [r]
+
r b; ĝ[ ]+r → [ĝ]−r . b[ ]−r → [rb0]

+
r ; [ĝ]+r → [ ]−r ĝ

[hneg]
+
r → [ ]+r d2

[d2]
+
s → [ ]0sd2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Then we just let the system output the answer, giving one step of advantage
to object Y es, in such a way that when we obtain in the environment an object
Y es or an object No we know that the system has halted (the computation
has finished) and that the object answers correctly the instance of the problem
that we were considering.

answer ≡

⎛
⎜⎜⎝

[No → No0]
−
s

[Y es]−s → [ ]0sY es

[No0]
−
s → [ ]0sNo

⎞
⎟⎟⎠

5 Applications

As an example of the usefulness of the subroutines outlined in the previous
section, and as a first step towards a programming language in cellular com-
puting, let us see how the design of the solutions for the Subset-Sum [5],
Knapsack [6], Bin Packing [7] and Partition problems would look like:
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SUBSET-
SUM

gen subsets (n)
calc weight (n)

rename
check weight
marker eq
counter (n)

clean dissolve
detector
answer

KNAPSACK
gen subsets (n)
calc weight1

(n)
calc weight2

(n)
rename

check weight1
marker leq
rename

check weight2
marker geq
counter (n)

clean dissolve
detector
answer

BINPACKING
for i = 1, . . . , b − 1 do

gen subsets (ni)
calc weight (ni)

rename
check weight
marker leq
counter(n)

clean dissolve
end for.

calc weight (nb)
rename

check weight
marker leq
counter (n)

clean dissolve
detector
answer

PARTITION
gen subsets (n)
calc weightcompl

(n)
rename

check weight
marker eq
counter (n)

clean dissolve
detector
answer

Also the solutions for SAT and VALIDITY problems could be rewritten in
this form (we refer to [9] for the exhaustive description of the rules and of the
similarities between the two designs).

gen assignments (n)
calc satisfied clauses (n,m)

synchronization
check truth value (n,m)

counter (n,m)
answer

In this case, a division process is carried out at the beginning of the process
to generate one membrane for each possible truth assignment of the n variables
appearing in the formula. There, the electrical charges of the membranes in
each step are meaningful, because they determine whether a variable will be
assigned a TRUE value or a FALSE value. This strategy is very close to the
one used in our generation stage.

In parallel with the division process, inside each membrane some objects
keep track of which of the m clauses is (are) satisfied whenever we assign a
truth value to a variable. This is somehow a weight calculation process. If the
clause i gets a value of TRUE with the current assignment of variable j, then
we add the “witness” of the clause, otherwise, we skip to the next variable.
The technique of rotating the indexes is used here.

Concerning the checking process, the situation is different, because we need
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to check that all the clauses are satisfied, instead of comparing the multiplic-
ities of two objects. However, the method that is used to control when the
checking stage ends is a counter in the skin, and this is also used for the nu-
merical problems. Also the answering process is very similar, the object Y es
gets some priority over the object No by means of a counter and of the electric
charge of the skin membrane.

6 Final Remarks

Up to now, the idea of a programming language has not been deeply discussed
in the Membrane Computing area, but actually it is not hard to find some
similarities between different designs conceived for different purposes. The
use of the changes in the polarization (used in every design within the active
membrane framework), the technique of working with indexed objects and
making a rotation on the indexes (already used in [2], section 7.2, and later
on by many other authors), the use of renaming rules in order to inhibit the
evolution of an object until a specific instant in the computation (e.g., in [5]
and [6]), and, of course, the use of counters (an indexed object that increases
its index up to a certain value and then transforms into something different,
see again [2]), among others. It is worth mentioning two examples of applying
these strategies to the design of solutions for other numerical NP-complete
problems: the multidimensional Knapsack problem in [1] and the Bin Packing
problem in [7].

In this paper a first informal approach is made to find some “macro-rules”
that may be used in a variety of situations. Of course, it is possible to define
other subroutines for other variants of P systems. Anyway, much more work
can be done in this field, increasing the list of instructions of this, so to say,
programming language.
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Computing, Gh. Păun, A. Riscos, A. Romero and F. Sancho (eds.), Report RGNC 01/04,
University of Seville, 2004, 342–353.

M.A. Gutiérrez-Naranjo et al. / Electronic Notes in Theoretical Computer Science 123 (2005) 93–110 109
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[6] Pérez-Jiménez, M.J.; Riscos-Núñez, A.: A linear solution for the Knapsack problem using active
membranes, Membrane Computing, C. Mart́ın-Vide, G. Mauri, Gh. Păun, G. Rozenberg and
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